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Abstract—When two agents settle a mutual concern by
negotiating with each other, they usually do not share their
preferences so as to avoid exploitation. In such a setting, the
agents may need to analyze each other’s behavior to make
an estimation of the opponent’s preferences. This process
of opponent modeling makes it possible to find a satisfying
negotiation outcome for both parties. A large number of such
opponent modeling techniques have already been introduced,
together with different measures to assess their quality. The
quality of an opponent model can be measured in two different
ways: one is to use the agent’s performance as a benchmark
for the model’s quality, the other is to directly evaluate its
accuracy by using similarity measures. Both methods have
been used extensively, and both have their distinct advantages
and drawbacks. In this work we investigate the exact relation
between the two, and we pinpoint the measures for accuracy
that best predict performance gain. This leads us to new insights
in how to construct an opponent model, and what we need to
measure when optimizing performance.

Keywords-Intelligent agents, Multiagent systems, Machine
learning

I. INTRODUCTION

A negotiation between two agents is a dialogue in which

both agents aim to reach an agreement better than their

status quo. A major challenge in automated negotiation is

that agents usually keep their preference information private

to avoid exploitation [1], [2]. When the agents have limited

knowledge of the other’s preferences, the agents may fail to

reach an optimal outcome as they cannot take the opponent’s

desires into account [3].

In order to improve the efficiency of the negotiation and

the quality of the outcome, agents may construct a model of

the opponent’s preferences, which aids them in estimating

the information that is kept private [1]–[3]. Over time, a large

number of such opponent models have been introduced, based

on different learning techniques and underlying assumptions,

and multiple methods have been used to compare their quality.

The different evaluation methods for opponent models make

it hard to compare different approaches, as each method

has its unique scope of application, together with different

advantages and drawbacks. From an engineering perspective,

it still remains unclear which opponent model to choose in

a particular negotiation setting.

Traditionally, there are two popular ways to measure the

quality of an opponent model:

1) Performance measures evaluate the quality of the

outcome, usually measured in utility gain, or distance of

the agreement to the Pareto frontier. With this method,

the success of an opponent model is expressed in terms

of the negotiation result (as opposed to the whole

negotiation process).

2) Accuracy measures aim to determine the quality of a

model in a more fundamental way, by quantifying how

well the opponent model represents the real preferences

of the opponent, using a certain similarity measure. An

example is the correlation between the estimated and

the real outcome space, or the percentage of correctly

inferred Pareto optimal outcomes.

There are various authors that evaluate their opponent

model with performance measures (e.g. [1]–[3]). Using a

performance measure has one very important quality: it

measures exactly what needs to optimized, namely the net

effect an opponent model has on the negotiation result. On

the other hand, because performance measures are only able

to demonstrate improvement of the end result, they may not

provide insight into why or how an opponent model works;

that is, they measure the result obtained by the negotiation

agent as a whole, of which the opponent model is only a

single component. This makes the performance measure very

sensitive to the specifics of the experimental setup. Moreover,

there is usually no clear upper bound in performance gain,

so it remains unclear what the highest attainable result is.
Other authors prefer to use accuracy measures to evaluate

their model (for example [4]–[7]). The main advantage of

this approach is that it directly assesses the quality of a

model, independent of other factors such as bidding strategy

or acceptance strategy. Secondly, it is easier to compare

accuracy results between different experimental setups, and

to track the accuracy of a model over the course of the

negotiation. This, in turn, can reveal valuable information

about the reasons for a model’s success.
There are also drawbacks of using accuracy measures

in negotiation, two of which we will address in this paper.

First, it is currently unclear what effect a more accurate

opponent model has on the negotiation outcome. It could

very well be that from some point, increased accuracy does

not translate into better performance. An 80% accurate model

for example, could perform just as well as a perfect model.
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Second, there are many accuracy measures to choose from,

and it is currently unknown which accuracy measure should

be selected to ensure a good overall end result; that is, we

would like to know what accuracy measure best predicts an

improvement in performance.

Our work bridges the gap between both approaches by

considering opponent models from both a performance and

an accuracy perspective. We first test many current opponent

modeling techniques in different negotiation settings, measur-

ing both their accuracy through time and their performance.

We then analyze how changes in accuracy translate into

performance differences. Moreover, we review all ways to

measure the accuracy of an opponent model, and we pinpoint

the best predictors for good performance.

The remainder of this paper is organized as follows. Sec-

tion II describes the setting and terminology used throughout

the paper. In Section III we introduce our research questions

and experiments, followed by a discussion of the results in

Section IV. Finally, Section V discuses related work and

Section VI provides directions for future work.

II. PRELIMINARIES

In this work we focus on bilateral automated negotiations,

where agents take turns in exchanging offers using the

alternating offers protocol. The agents seek to reach an

agreement while at the same time aiming to maximize their

own utility. A negotiation scenario consists of the negotiation

domain, which specifies the setting and all possible bids

(also called the outcome space, denoted by Ω), together

with a privately-known preference profile for each party. A

preference profile is described by a utility function u(ω),
which maps each outcome ω ∈ Ω to a utility in the range

[0, 1]. We assume a common discrete time line, with a

deadline after a specified number of rounds N . Both agents

receive utility 0 if they do not succeed in reaching an

agreement in time.

We discuss opponent models that attempt to estimate the

opponent’s utility function uop(ω) while relying solely on the

information gathered during the negotiation. Many existing

models and measures assume the agent’s utility function

is linear additive [3], [8]–[10]. Alternatively, agents may

have non-linear preferences (e.g., [11]); however, we restrict

ourselves to linear additive preference profiles in this work,

as to the best of our knowledge, there exists no large set of

comparable models for non-linear preferences.

Linear additive functions make explicit that different issues

can be of different importance to a negotiating agent and

can be used to efficiently calculate the utility of a bid. The

utility u(ω) of an outcome ω ∈ Ω is computed as a weighted

sum (as specified by the issue weights wi) of value weights
ei(ωi):

u(ω) =

n∑
i=1

wi · ei(ωi). (1)

III. MEASURING THE QUALITY OF OPPONENT MODELS

As outlined in the introduction, the aim of this work is to

answer three research questions:

1) How does the accuracy of opponent models depend

on negotiation factors, such as domain size, or time?

2) What is the relationship between the accuracy of an

opponent model and its expected performance gain?

3) What accuracy measures are the best predictors for

performance gain?

To answer these questions, we first outline our selection of

opponent models (Section III-A) and the accuracy measures

incorporated in our method (Section III-B). Next, we discuss

the experimental setup (Section III-C and III-D).

A. Selection of Opponent Models

We compare a large set of state of the art opponent models,

which were applied in the Automated Negotiating Agents

Competition (ANAC) [12], [13]. ANAC is a yearly inter-

national competition in which negotiation agents compete

on a set of scenarios that are unknown beforehand. Our

reason for including this set of models is threefold: first, they

represent the state of the art; second, to our knowledge,

they are the largest set of techniques designed for one

common setting consistent with ours; and finally, their code

is publicly available. Table I gives an overview of all models

evaluated in this work, including three theoretical baselines.

We distinguish four types of opponent models:

1) Bayesian models estimate the opponent’s preferences

by first generating a set of candidate preference profiles.

Next, Bayesian learning is used to continually update

the model, based on certain assumptions about the

opponent’s concession function. For these models,

we also include Perfect variants, which use perfect

knowledge about the opponent’s concessions, but are

still unaware of the opponent’s exact preferences.

2) Frequency models estimate both the issue and value

weights separately. The issue weights are estimated

based on how often their value is changed between

sequential bids. The value weights are derived from

the frequency they are offered.

3) Value models are similar to the frequency models,

except that the issue weights are assumed to be equal.

4) Theoretical baselines are used to compare the quality

of the models. The Perfect Model and Worst Model act

as an upper and lower bound on quality respectively,

while the Opposite Model functions as a baseline, since

it serves as a good initial guess of the opponent’s

preferences.

Each model was isolated from existing negotiation agents

(as indicated in Table I), and then generalized to be compat-

ible with any bidding strategy, as in [14]. The advantage of

using this approach is that we can interchange the opponent

modeling component of each negotiation strategy, so that we
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can compare the performance of different opponent models

while keeping the bidding and acceptance strategy fixed.

Bayesian Models
Bayesian
Scalable
Model [3]

Estimates the issue and value weights separately,
using Bayesian learning. The opponent is assumed
to concede a constant amount per round.

IAMhaggler
Bayesian
Model [8]

A Bayesian model in which the opponent is assumed
to use a particular time-dependent strategy and only
unique bids are used to update the model.

Frequency Models
HardHeaded
Frequency
Model [9]

Learns the issue weights based on how often the
value of an issue changes. The value weights are
estimated based on the frequency they are offered.

Smith Frequency
Model [10]

Learns the value weights based on frequency they
are offered. The issue weights are estimated based
on the distribution of the values.

Agent X
Frequency
Model

A variant of the HardHeaded Frequency Model that
takes the opponent’s tendency to repeat bids into
account.

N.A.S.H.
Frequency
Model

Learns the issue weights based on how often the best
value for each issue is offered. The value weights
are estimated based on their frequency.

Value Models
Agent LG Value
Model

Estimates the value weights based on the frequency
they are offered.

CUHKAgent
Value Model

Counts how often each value is offered. The utility
of a bid is the sum of the score of its values divided
by the best possible score. The model only uses the
first 100 unique bids for its estimation.

Theoretical Baselines
Opposite Model Defines the opponent’s utility as one minus the

agent’s utility.
Perfect Model Perfect knowledge of the opponent’s preferences.
Worst Model Defines the estimated utility as one minus the real

utility.

Table I
OVERVIEW OF OPPONENT MODELS.

B. Selection of Accuracy Measures
We compare the accuracy of opponent models by evaluat-

ing how well the models estimate the opponent’s preferences

when provided with various negotiation traces. In effect,

we treat the opponent model as an isolated component

that receives offers as input, and yields an estimate of the

opponent’s preference profile as output, which (hopefully)

gets increasingly accurate with every processed bid.
When we assess opponent model accuracy, we require an

accuracy measure that quantifies the similarity between the

opponent’s actual preference profile uop and the estimation

u′
op. As there is no current standard for accuracy measures,

we surveyed all accuracy measures currently in use, as shown

in Table II. The first two sets of measures are derived from

literature, to which we have added a set of metrics based on

the Pareto optimal frontier.
Many of the measures in Table II are formulated in terms

of the combined properties of the opponent’s utility space

and the agent’s own utility space – together called the bid
space. We define the real bid space B as

B = {(uown(ω), uop(ω)) | ω ∈ Ω} .

Outcome Space
Pearson correlation
of bids [6]

Pearson correlation coefficient between real
and estimated preferences.

Ranking distance
of bids [4], [6]

Ranking distance between real and estimated
preference.

Average difference
between bids

Average difference between the real and
estimated utility of all bids.

Issue Weights
Pearson correlation
of issue weights [6]

Pearson correlation coefficient between real
and estimated issue weights.

Ranking distance
of issue weights [6]

Ranking distance between real and estimated
issue weights.

Average difference be-
tween issue weights [7]

Average difference between the real and
estimated issue weights.

Pareto Frontier
Average difference
of Pareto frontier

The average difference between the real and
estimated utility of the Pareto bids.

Percentage of found
Pareto bids

Percentage of real Pareto bids that are also
estimated to be a Pareto bid.

Percentage of correct
Pareto bids

Percentage of estimated Pareto bids that are
also real Pareto bids.

Difference in Pareto
frontier surface

Absolute difference in surface under the real
and estimated Pareto frontier.

Table II
OVERVIEW OF ACCURACY MEASURES.

The estimated bid space B′ is defined in terms of the

estimated opponent utility function u′
op:

B′ =
{(

uown(ω), u
′
op(ω)

) | ω ∈ Ω
}
.

To quantify how well u′
op approximates the opponent’s

preferences, we might consider the differences between u′
op

and uop directly. Alternatively, we can analyze the resulting

bid spaces B and B′, or we might concentrate on subsets.

Outcome space accuracy measures quantify the difference

between uop and u′
op by considering all bids in the outcome

space Ω. A straightforward measure that has been used is

the average distance between bids metric, which calculates

the average absolute difference between uop and u′
op over

Ω. However, as models are usually only concerned with the

ranking of outcomes, a more suitable metric is the Pearson
correlation of bids that measures the correlation between two

outcome spaces, which is defined as follows:

dp(uop, u
′
op)=

∑
ω∈Ω

(uop(ω)−uop)(u
′
op(ω)−u′

op)

√∑
ω∈Ω

(uop(ω)−uop)
2
∑
w∈Ω

(u′
op(ω)−u′

op)
2

, (2)

where uop and u′
op denote the real and estimated average

utility over all outcomes. Alternatively, the ranking distance
of bids compares all pairwise preference orderings:

dr(uop, u
′
op) =

1

|Ω|2
∑

ω∈Ω,ω′∈Ω

c≺u,≺u′(ω, ω′), (3)

where c≺u,≺u′ is the conflict indicator function, which is

equal to one when the ranking of the outcomes ω and ω′

differs between the two profiles, and zero otherwise.
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Issue weight accuracy measures quantify the difference

between the issue weights of uop and u′
op. The underlying

idea is that these variables are most important to estimate

correctly. The metrics used are identical to the metrics above.

Pareto frontier accuracy measures focus only on the simi-

larity between two Pareto frontiers. This is more challenging

since their sizes can be different, so two sets of Pareto

frontiers cannot be compared in the same way as outcome

spaces or weight vectors. The average difference of Pareto
frontier metric calculates the difference in utility over all

Pareto bids of bid space B. The percentage of found Pareto
bids measure gives the percentage of Pareto optimal bids of

space B that are also in B′. Conversely, the percentage of
correct Pareto bids metric yields the percentage of Pareto

optimal bids in B′ that are correct (i.e.: in B).

Finally, we introduce the difference in Pareto frontier
surface measure, which is defined as follows: we take all

outcomes in Ω that form the estimated Pareto frontier in B′;
we then map these points onto B. Finally, we compute the

absolute difference in surface below these points and the

actual Pareto frontier, as shown in Figure 1.

Figure 1. Visualization of the difference in Pareto frontier surface.

C. Quantifying the Estimation Accuracy

The goal of our first experiment is to quantify the

accuracy of opponent models, both in different domains

and through time. We outline in detail below the factors

of the experimental setup that we believe are important to

consider.

Influence of the Opponent Model on the Opponent’s Actions

When an agent uses an opponent model, it indirectly

influences the opponent in two ways: first, a model may

influence the time of agreement, as a more accurate model

may lead to better offers, resulting in earlier agreement;

second, a model may cause changes in the opponent’s
strategy.

Both factors influence the bids presented by the opponent,

and thus the information available for the model. To ensure

every model learns from the same information, and therefore

can be compared with the others, we selected non-adaptive

opponents that never accept a bid.

Influence of the Opponent’s Strategy on the Opponent Model

Opponents differ in how well their behavior corresponds

to a model’s assumptions. For instance, a model that assumes

that the opponent concedes will likely have problems mod-

eling a very competitive agent. Therefore, we should select

a balanced set of opponents to avoid favoring any model.

One of the defining factors here is how much information

an opponent reveals over time. For example, a conceding

opponent reveals more of its preferences than an agent who

makes random bids. Furthermore, we should include agents

that strongly violate the modeling assumptions as to evaluate

the robustness of the models. Taking both factors into account,

we selected the following agents:

1) Conceding agents select a bid depending on the current

time t ∈ [0, 1] according to a target utility of the

form ut = Pmax · (1 − t1/e) [15]. We selected four

agents with Pmax = 1 and different concession rates

e ∈ {0.1, 0.2, 1.0, 2.0}. These agents make up the

predictable opponents.

2) Random agents offer a random bid above a target

utility m, where we selected m ∈ {0, 0.25, 0.50, 0.75}.

This type of agent and the others below form the

unpredictable opponents.

3) Conceding agents with an offset are time-dependent

agents [15] that do not start with their best bid. For

this category we use a linear concession rate (e = 1)

and starting point Pmax ∈ {0.7, 0.8, 0.9}.
4) Non-conceding agents start with a minimum target

utility that increases to the maximum over time. The

target utility is calculated as follows: ut = Pmin +
(1 − Pmin) · t. We use four agents with parameters

Pmin ∈ {0, 0.25, 0.50, 0.75}.
Influence of the Scenario on the Opponent Model

We distinguish three features of the negotiation scenario

that can significantly influence how well the opponent model

is able to estimate the opponent’s preferences:

1) Domain size. The total possible bids directly relates to

the amount of parameters of the preference profile.

2) Bid distribution. The bid distribution is defined as

the average distance to the nearest Pareto optimal bid.

A scenario with a high bid distribution has a high

percentage of outcomes far from the Pareto frontier.

3) Opposition. The opposition is defined as the distance

from the Kalai-Smorodinsky point to the point of

perfect satisfaction (maximum utility for both parties).

The higher the opposition is, the more competitive the

domain.

We made sure to select a balanced set of scenarios that

display all characteristics. We chose five domains based on

their size: Itex vs Cypress [12] (small: 180 bids), Employer
contract [16] (small: 3125 bids), ADG [12] (medium: 15625

bids), Supermarket [12] (large: 98784 bids), and Travel [13]

(large: 188160 bids). For each domain we created a set of

scenarios varying in bid distribution and opposition. As we

defined three levels of degree for both factors, 45 scenarios

are used in total.

62



For the experiment, we ensured that each model processes

exactly the same opponent traces, using a maximum amount

of N = 5000 rounds. For the three groups of deterministic

agents we recorded their (unique) negotiation trace, amount-

ing to a total of 495 unique traces. For the random agents

we recorded five different traces per agent, thus 900 traces

in total. Combined, this amounts to 1395 traces that were

used to train every opponent model.

D. Quantifying the Accuracy/Performance Relationship

The goal of the second experiment is to investigate

the relation between accuracy and performance measures,

thereby answering our final two research questions. For this

experiment, we used a realistic set of opponents whose

acceptance strategies are enabled. With realistic opponents,

every negotiation is unique, so for this investigation we

had to scale down the experimental setup. We selected

a set of bidding strategies and scenarios where using a

good opponent model would have added value; i.e., tough

bididng strategies with limited learning capabilities (i.e.,

no opponent model), and large, competitive negotiation

scenarios. We selected four of the top bidding strategies

from ANAC: Agent K2, HardHeaded, IAMhaggler2011,

and The Negotiator; and four time-dependent agents with

concession rate e ∈ {0.1, 0.2, 1.0, 2.0}. These eight bidding

strategies were combined with all thirteen models (the

models in Table I and the two Bayesian models with perfect

strategy knowledge) and no model. Each agent competed

five times against all opponents (the eight bidding strategies

without model) on five scenarios: Grocery [12], Employment
contract [16], Travel [13], Small Energy, and Supermarket
(both used in ANAC 2012).

Each agent played both sides of the five scenarios using

a round-based protocol of 1000 rounds. Since 112 agents

competed 5 times against 8 opponents on 5 scenarios for

both preference profiles, 44800 matches were ran in total.

IV. EXPERIMENTAL ANALYSIS

We will now answer our three research questions by

analyzing the results of both experiments. Each section

corresponds to one of the research questions.

A. Evaluating the Estimation Accuracy of Opponent Models

As outlined in Section III-C, we measured the accuracy of

a large set of opponent models to answer our first research

question, the results of which are shown in Figure 2–4.

Accuracy over Time

The graphs in Figure 2 show the average accuracy of

the opponent models over time. The left graph shows

the accuracy over time when playing against predictable

opponents; the right graph shows the results again the

unpredictable opponents.

First of all, it is surprising to see that many of the state of

the art models actually become less accurate over time. The

main cause of this phenomenon is that the bids presented

later on in the negotiation are incorrectly handled. The

value models and frequency models for example, treat every

received bid the same way, independent of the time it is

received. In effect, this means that when the opponent is

conceding, the models increase the estimated utility of less

preferred outcomes. This does not hold for the CUHKAgent
Value Model, which incidentally also performs best, as this

model only takes the first 100 unique bids into account.

For Bayesian models, the problem is that they assume very

particular opponent behavior, which is likely to become

increasingly invalid as time progresses, and they perform

very poorly as a result. When we disregard this shortcoming

by considering the perfect Bayesian models, they perform

better, and their accuracy then increases monotonically over

time. However, even in this case, they come second to the

CUHKAgent Value Model by a large margin.

Another interesting result is that despite their simplicity,

the frequency models and value models perform best against

both types of opponents. We believe that this due to the

small number of assumptions they make; i.e., only assuming

that values with high utility are offered relatively more often.

As the right graph illustrates, these models are rather robust,

even though it is clear from the final accuracy that it is harder

to model unpredictable agents.

The lesson to take away from this is that to be robust,

opponent models need to minimize their assumptions about

the opponent’s behavior. Of course, every model needs to

make certain educated guesses, but when it does, the model

should at least be highly adaptable, paying close attention

to the opponent’s strategy. The predictions should be revised

if, over time, the opponent behavior does not seem to fit the

assumptions anymore.

Accuracy per Opponent

We now analyze in more detail the accuracy of the

best performing models in every category against different

opponents; that is, the best value model (CUHK Value Model),
the best frequency model (Smith Frequency Model), and the

best performing Bayesian models (Perfect Scalable Bayesian
Model and IAMhaggler Bayesian Model). The results are

shown in Figure 3. While the best value model perform best

on average, there is no opponent model that dominates all

others.

An interesting result is that the technique of the best value

model to only take a limited amount of bids into account

does not always pay off. The model performs poorly against

the non-conceding agents, who show their most preferred

values later in the negotiation. This means that the model

can be fooled, which can be a concern in practice.

Accuracy per Scenario

We are also interested in exactly how the specifics of the

negotiation scenario influences accuracy. We focus on the
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Figure 2. Pearson correlation over time against predictable (conceding) opponents and the unpredictable opponents (other agents). The numbers above a
cluster of lines are ordered from high to low accuracy.

Figure 3. Accuracy of four opponent models against different types of opponents, measured using two accuracy measures.

same four opponent models as above, and evaluate their

accuracy against predictable opponents. Figure 4 summarizes

the results. Note that we consider the average accuracy over

all four models here, but we have verified that our conclusions

also hold for each model individually.

One of the first observations is that there is a high variance

in accuracy over different scenarios, and each factor seems

to be equally important to consider. This underlines the

importance of using a balanced set of negotiation scenarios.

Clearly, domain size is a significant factor, as the domain

size relates directly to the amount of unknown variables to

be learnt. But also for the bid distribution and opposition
we find a strong correlation with learning accuracy. The

reasons for both are very similar: when the bid distribution

or opposition is low, there are many outcomes of similar

utility because the average distance to the Pareto frontier is

small. This in turn, entails that the values of an issue are

relatively close to each other in utility, which is harder for

the models to learn than more extreme preferences.

B. Evaluating the Accuracy vs. Performance Relationship

Our second goal was to investigate the relationship between

accuracy and performance of opponent models. Figure 5

visualizes the results for two accuracy measures: Pearson
correlation of bids and difference in Pareto frontier surface.

Figure 4. Accuracy of the best opponent models on varying scenarios.

The performance is expressed in terms of obtained utility by

the agents that employ the opponent models, normalized such

that the Worst model’s performance is zero, and the Perfect
model’s performance is 1. Using no model falls somewhere in

between, since this is still better than using a wrong model.

The first thing to notice is the cluster of the best performers:

the value and frequency models. The performance of these

models is already quite close to that of the perfect model. To

put it differently, we cannot anticipate a significant improve-

ment from any other preference modeling technique over

what is already achieved by these rather simple techniques.

The other types of opponent models also form clusters

in the diagram. The (Perfect) Bayesian Model perform even

worse than not using an opponent model; and only slightly

better than simply assuming opposite preferences.

The almost linear relationship between accuracy and
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Figure 5. Accuracy versus performance for all opponent models. Accuracy is measured using the difference in Pareto frontier surface (range [0, 1], where
0 is best) and Pearson correlation of bids (range [−1, 1], where 1 is best).

performance is the second thing that stands out. This shows

that there is always added value to increasing the accuracy

of an opponent model, even when the accuracy is already

high. Nevertheless, the added value will necessarily be small,

as the performance is already at 90% of its upper limit when

the accuracy is at 70%.

An interesting comparison can be made with the results of

the previous experiment. Figure 2 clearly shows the decrease

in accuracy over time of many of the frequency and value

models. How is it that they still manage to perform close

to optimally? The reason is that many negotiations end in

agreement, and this occurs somewhere before the deadline by

definition. In these cases, the models are updated with less

bids of poor value for the opponent. Therefore, the deciding

factor in the success of the value and frequency models lies

in their higher initial accuracy.

Finally, it is interesting that the results for the Pearson
correlation of bids and difference in Pareto frontier surface
metrics are in fact very similar when we ignore their

orientation. Despite that the latter only measures the quality

of the Pareto optimal frontier instead of the full outcome

space, it seems to be a suitable predictor for performance as

well. We explore this idea further in the next paragraph.

C. Evaluating the Usefulness of Accuracy Measures

Our final goal was to find a strong predictor for perfor-

mance of opponent models, since there are so many different

accuracy measures to pick from. Towards this end, we applied

all of the accuracy measures shown in Table II and analyzed

their correlation with performance; see Figure 6.

The dark line represents the predictive power of each

accuracy measure, which is defined by the absolute corre-

lation coefficient |ρ| between the accuracy measure score

and the model’s performance. We take the absolute value

because some accuracy measures are negatively correlated

with performance, while others are positively correlated.

The light grey line indicates what portion of the bid space

is learnt by each accuracy measure. For this, we calculate the

Figure 6. Absolute correlation between accuracy measure scores and two
other measures: performance and “Pearson correlation of bids”.

absolute correlation coefficient |ρ| between each accuracy

measure and the Pearson correlation of bids. At the lower

end of the scale we see the accuracy measures that only

consider issue weights, which means they are not correlated

at all with learning the space as a whole. These measures

should not be used to make predictions about performance

because they do not convey enough information about the

accuracy of a model.

We found three measures that correlate strongly with per-

formance, as indicated by the dark grey line, and therefore are

good performance predictors; these are: difference in Pareto
frontier surface, Pearson correlation of bids, and Ranking
distance of bids. These measures codify sufficient information

about the relationship between the real preferences and the

learned preferences, and therefore, we can translate these

notions to statements about performance. The performance

of the top three measures are significantly better than the

other measures (one-tailed t-test, p < 0.01).

Even though it only quantifies the similarity of the Pareto

frontier, the difference in Pareto frontier surface metric

performs best of all (one-tailed t-test, p < 0.02). This means

that for an opponent model, it is sufficient to predict which
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bids are Pareto optimal. The reason being that the Pareto

frontier is a crucial component of the outcome space, and that

many bidding strategies seek Pareto optimal agreements. It is

less computationally expensive to calculate than the ranking
distance of bids, and it has the lowest standard deviation

between the runs. Furthermore, it is defined for all inputs, in

contrast to the Pearson correlation measures, whose results

are undefined when all bids are estimated to have the same

utility. Therefore, we recommend the difference in Pareto
frontier surface as a suitable measure for accuracy.

V. RELATED WORK

We consider two categories of related work. The first

category consists of work evaluating the accuracy of op-

ponent models. Carbonneau et al. [5] calculate the Pearson

correlation between the real and estimated utility of the

opponent’s next bid. Hindriks and Tykhonov [6] extend this

approach by measuring the Pearson correlation of the whole

outcome space and discuss analogous definitions for the

ranking distance. Our method incorporates both measures.

An alternative approach is to measure the distance between

elements of two preference profiles. For example Jazayeriy

et al. [7] introduce such measures for the learning error of

issue weights. We have incorporated these measures in our

method, and we also apply the same measures to quantify

the similarity between two full bid spaces.

Finally, there exist accuracy measures tailored to specific

learning methods. Buffett and Spencer [4] for example, define

a metric for opponent models that use Bayesian learning. The

measure is defined as the average likelihood that the correct

hypothesis is chosen from the set of candidate hypotheses.

Since we employ models that are based on a wide range of

learning techniques, we do not incorporate measures specific

to a particular learning method.

The second category of related work quantifies the relation-
ship between accuracy and performance. In [1], Coehoorn

and Jennings introduce a model that estimates the opponent’s

issue weights and investigate the influence of small prediction

errors on performance. Our method takes this a step further,

as we analyze the relation between an exhaustive set of

accuracy measures – including accuracy of the issue weights

– and performance.

VI. CONCLUSION AND FUTURE WORK

In this work we have evaluated a large set of accuracy

measures to identify the best method to predict the perfor-

mance of opponent modeling techniques in negotiation. We

introduced a procedure to quantify the accuracy of state of

the art opponent models and we identified their strengths

and weaknesses. One of our main conclusions is that there

is an almost linear correspondence between accuracy and

performance of models when we employ the proper accuracy

measures. Moreover, the best models are close to being

perfectly accurate, which means there is only limited room

for improvement with regard to performance.

Surprisingly, the accuracy of most opponent models decays

over time due to the incorrect handling of the opponent’s

less preferred bids, which are usually offered at a later stage

of the negotiation. Especially then, good strategy prediction

is needed in order to be effective at preference modeling.

Finally, we analyzed how well accuracy measures can

predict the performance of an opponent model. We concluded

that three measures in particular are useful predictors of

performance, and we found that this can be best achieved by

limiting the analysis to difference in Pareto frontier surface

between the real and the learned bid space.
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